Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
BMC Genomics ; 25(1): 337, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38641568

RESUMO

BACKGROUND: Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS: In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION: Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.


Assuntos
Neuropeptídeos , Poliquetos , Humanos , Animais , Larva/genética , Células HEK293 , Poliquetos/genética , Neuropeptídeos/genética , Neuropeptídeos/química , Perfilação da Expressão Gênica
2.
Sci Total Environ ; 927: 172238, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582121

RESUMO

Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 µM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.


Assuntos
Metilação de DNA , Epigênese Genética , Sulfetos , Transcriptoma , Animais , Transcriptoma/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Sulfetos/toxicidade , Epigenoma , Poluentes Químicos da Água/toxicidade , Estresse Fisiológico , Poliquetos/genética , Poliquetos/efeitos dos fármacos , Perfilação da Expressão Gênica
3.
PLoS One ; 19(3): e0297961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446781

RESUMO

Nereidid polychaetes are well known from shallow marine habitats, but their diversity in the deep sea is poorly known. Here we describe an unusual new nereidid species found at methane seeps off the Pacific coast of Costa Rica. Specimens of Pectinereis strickrotti gen. nov., sp. nov. had been observed dating back to 2009 swimming just above the seafloor at ~1,000 m depth but were not successfully captured until 2018. Male epitokes were collected as well as a fragment of an infaunal female found in a pushcore sample. The specimens were all confirmed as the same species based on mitochondrial COI. Phylogenetic analyses, including one based on available whole mitochondrial genomes for nereidids, revealed no close relative, allowing for the placement of the new species in its own genus within the subfamily Nereidinae. This was supported by the unusual non-reproductive and epitokous morphology, including parapodial cirrostyles as pectinate gills, hooked aciculae, elfin-shoe-shaped ventral cirrophores, and elongate, fusiform dorsal ligules emerging sub-medially to enlarged cirrophores. Additionally, the gill-bearing subfamily Dendronereidinae, generally regarded as a junior synonym of Gymnonereidinae, is reviewed and it is here reinstated and as a monogeneric taxon.


Assuntos
Anelídeos , Apocynaceae , Poliquetos , Feminino , Masculino , Animais , Brânquias , Filogenia , Poliquetos/genética
4.
Mar Genomics ; 74: 101084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485292

RESUMO

The Annelida phylum is composed of a myriad of species exhibiting key phenotypic adaptations. They occupy key ecological niches in a variety of marine, freshwater and terrestrial ecosystems. Importantly, the increment of omic resources is rapidly modifying the taxonomic landscape and knowledge of species belonging to this phylum. Here, we comprehensively characterised and annotated a transcriptome of the common ragworm, Hediste diversicolor (OF Müller). This species belongs to the family Nereididae and inhabits estuarine and lagoon areas on the Atlantic coasts of Europe and North America. Ecologically, H. diversicolor plays an important role in benthic food webs. Given its commercial value, H. diversicolor is a promising candidate for aquaculture development and production in farming facilities, under a circular economy framework. We used Illumina next-generation sequencing technology, to produce a total of 105 million (M) paired-end (PE) raw reads and generate the first whole-body transcriptome assembly of H. diversicolor species. This high-quality transcriptome contains 69,335 transcripts with an N50 transcript length of 2313 bp and achieved a BUSCO gene completeness of 97.7% and 96% in Eukaryota and Metazoa lineage-specific profile libraries. Our findings offer a valuable resource for multiple biological applications using this species.


Assuntos
Ecossistema , Poliquetos , Animais , Transcriptoma , Poliquetos/genética , Aquicultura , Europa (Continente)
5.
Neural Dev ; 19(1): 3, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383501

RESUMO

BACKGROUND: The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS: Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS: The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS: Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.


Assuntos
Anelídeos , Neuropeptídeos , Poliquetos , Animais , Filogenia , Anelídeos/anatomia & histologia , Anelídeos/genética , Sistema Nervoso/metabolismo , Poliquetos/anatomia & histologia , Poliquetos/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Larva
6.
Sci Data ; 11(1): 90, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238346

RESUMO

Echiura is a distinctive family of unsegmented sausage-shaped marine worms whose phylogenetic relationship still needs strong evidence from the phylogenomic analysis. In this family, Urechis unicinctus is known for its high nutritional and medicinal value and adaptation to harsh intertidal conditions. Herein, we combined PacBio long-read, short-read Illumina and Hi-C sequencing, generating a high-quality chromosome-level genome assembly of U. unicinctus. The assembled genome spans ~1,138.6 Mb with a scaffold N50 of 68.3 Mb, of which 1,113.8 Mb (97.82%) were anchored into 17 pseudo-chromosomes. The BUSCO analysis demonstrated the completeness of the genome assembly and gene model prediction are 93.5% and 91.5%, respectively. A total of 482.1 Mb repetitive sequences, 21,524 protein-coding genes, 1,535 miRNAs, 3,431 tRNAs, 124 rRNAs, and 348 snRNAs were annotated. This study significantly improves the quality of U. unicinctus genome assembly, sets the footsteps for molecular breeding and further study in genome evolution, genetic and molecular biology of U. unicinctus.


Assuntos
Cromossomos , Genoma , Poliquetos , Cromossomos/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico , Poliquetos/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38183966

RESUMO

The survival and physiological functions of polar marine organisms are impacted by global climate changes. Investigation of the adaptation mechanisms underlying biomineralization in polar organisms at low temperatures is important for understanding mineralized organismal sensitivity to climate change. Here, we performed electron probe analysis on the shields of Antarctic polychaete Sternaspis sendalli and Arctic polychaete Sternaspis buzhinskajae (Sternaspidae), and sequenced the transcriptomes of the tissues surrounding shields to examine biomineral characteristics and adaptive mechanisms in persistently cold environments. Compared to the temperate relative species, the relative abundance of iron, phosphorus, calcium, magnesium, nitrogen, sulfur and silicon in two polar sternaspid shields was similar to Sternaspis chinensis. However, the diversity and expression levels of biomineralization-related shell matrix proteins differed between the polar and temperate species, suggesting distinct molecular mechanisms underlying shield formation in cold environments. Tubulin and cyclophilin were upregulated compared to the temperate species. Furthermore, 42 positively selected genes were identified in Antarctic S. sendalli, with functions in cytoskeletal structure, DNA repair, immunity, transcription, translation, protein synthesis, and lipid metabolism. Highly expressed genes in both polar species were associated with cytoskeleton, macromolecular complexes and cellular component biosynthesis. Overall, this study reveals conserved elemental composition yet distinct biomineralization processes in the shields of polar sternaspids. The unique expression of biomineralization related genes and other cold-adaptation related genes provide molecular insights into biomineralization in cold marine environments.


Assuntos
Poliquetos , Animais , Poliquetos/genética , Biomineralização , Temperatura Baixa , Perfilação da Expressão Gênica , Transcriptoma
8.
PeerJ ; 11: e16446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047014

RESUMO

Background: The mitochondrial genomes (mitogenomes) of metazoans generally include the same set of protein-coding genes, which ensures the homology of mitochondrial genes between species. The mitochondrial genes are often used as reference data for species identification based on genetic data (DNA barcoding). The need for such reference data has been increasing due to the application of environmental DNA (eDNA) analysis for environmental assessments. Recently, the number of publicly available sequence reads obtained with next-generation sequencing (NGS) has been increasing in the public database (the NCBI Sequence Read Archive, SRA). Such freely available NGS reads would be promising sources for assembling mitochondrial protein-coding genes (mPCGs) of organisms whose mitochondrial genes are not available in GenBank. The present study aimed to assemble annelid mPCGs from raw data deposited in the SRA. Methods: The recent progress in the classification of Annelida was briefly introduced. In the present study, the mPCGs of 32 annelid species of 19 families in clitellates and allies in Sedentaria (echiurans and polychaetes) were newly assembled from the reads deposited in the SRA. Assembly was performed with a recently published pipeline mitoRNA, which includes cycles of Bowtie2 mapping and Trinity assembly. Assembled mPCGs were deposited in GenBank as Third Party Data (TPA) data. A phylogenetic tree was reconstructed with maximum likelihood (ML) analysis, together with other mPCGs deposited in GenBank. Results and Discussion: mPCG assembly was largely successful except for Travisia forbesii; only four genes were detected from the assembled contigs of the species probably due to the reads targeting its parasite. Most genes were largely successfully obtained, whereas atp8, nad2, and nad4l were only successful in 22-24 species. The high nucleotide substitution rates of these genes might be relevant to the failure in the assembly although nad6, which showed a similarly high substitution rate, was successfully assembled. Although the phylogenetic positions of several lineages were not resolved in the present study, the phylogenetic relationships of some polychaetes and leeches that were not inferred by transcriptomes were well resolved probably due to a more dense taxon sampling than previous phylogenetic analyses based on transcriptomes. Although NGS data are generally better sources for resolving phylogenetic relationships of both higher and lower classifications, there are ensuring needs for specific loci of the mitochondrial genes for analyses that do not require high resolutions, such as DNA barcoding, eDNA, and phylogenetic analysis among lower taxa. Assembly from publicly available NGS reads would help design specific primers for the mitochondrial gene sequences of species, whose mitochondrial genes are hard to amplify by Sanger sequencing using universal primers.


Assuntos
Anelídeos , Poliquetos , Humanos , Animais , Genes Mitocondriais , Filogenia , DNA Mitocondrial/genética , Poliquetos/genética
9.
PLoS One ; 18(12): e0295290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127889

RESUMO

Platynereis dumerilii, a marine annelid, is a model animal that has gained popularity in various fields such as developmental biology, biological rhythms, nervous system organization and physiology, behaviour, reproductive biology, and epigenetic regulation. The transparency of P. dumerilii tissues at all developmental stages makes it easy to perform live microscopic imaging of all cell types. In addition, the slow-evolving genome of P. dumerilii and its phylogenetic position as a representative of the vast branch of Lophotrochozoans add to its evolutionary significance. Although P. dumerilii is amenable to transgenesis and CRISPR-Cas9 knockouts, its relatively long and indefinite life cycle, as well as its semelparous reproduction have been hindrances to its adoption as a reverse genetics model. To overcome this limitation, an adapted culturing method has been developed allowing much faster life cycling, with median reproductive age at 13-14 weeks instead of 25-35 weeks using the traditional protocol. A low worm density in boxes and a strictly controlled feeding regime are important factors for the rapid growth and health of the worms. This culture method has several advantages, such as being much more compact, not requiring air bubbling or an artificial moonlight regime for synchronized sexual maturation and necessitating only limited water change. A full protocol for worm care and handling is provided.


Assuntos
Anelídeos , Poliquetos , Animais , Filogenia , Epigênese Genética , Poliquetos/genética , Estágios do Ciclo de Vida
10.
Sci Rep ; 13(1): 22926, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129466

RESUMO

Understanding the distribution and biodiversity of marine species is crucial for developing effective conservation strategies and maintaining the health of global ecosystems. Advancements in molecular data utilization have significantly improved our understanding of biodiversity within the genus Terebellides. In this study, we conducted a phylogenetic analysis on polychaete samples from the Kandalaksha Bay, White Sea, revealing their affiliation with a putative undescribed species of the genus Terebellides found in two locations of the North Sea. Interestingly, this species was not detected in the Norwegian and Barents Seas, leading us to propose a disjunct distribution scenario for this Terebellides species. This unique distribution pattern might be attributed to the succession of polychaetes by new species, facilitated by the Gulf Stream and a climate change role in driving shifts in species' ranges and altering marine ecosystem dynamics.


Assuntos
Anelídeos , Poliquetos , Animais , Ecossistema , Filogenia , Mar do Norte , Poliquetos/genética , Oceanos e Mares , Mudança Climática
11.
Sci Rep ; 13(1): 19419, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993494

RESUMO

Benthic annelids belonging to the family Syllidae (Annelida, Errantia, Phyllodocida) exhibit a unique reproduction mode called "schizogamy" or "stolonization", in which the posterior body part filled with gametes detaches from the original body, as a reproductive unit (stolon) that autonomously swims and spawns. In this study, morphological and histological observations on the developmental processes during stolonization were carried out in Megasyllis nipponica. Results suggest that the stolon formation started with maturation of gonads, followed by the formation of a head ganglion in the anteriormost segment of the developing stolon. Then, the detailed stolon-specific structures such as stolon eyes and notochaetae were formed. Furthermore, expression profiles of genes involved in the anterior-posterior identity (Hox genes), head determination, germ-line, and hormone regulation were compared between anterior and posterior body parts during the stolonization process. The results reveal that, in the posterior body part, genes for gonadal development were up-regulated, followed by hormone-related genes and head-determination genes. Unexpectedly, Hox genes known to identify body parts along the anterior-posterior axis showed no significant temporal expression changes. These findings suggest that during stolonization, gonad development induces the head formation of a stolon, without up-regulation of anterior Hox genes.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Anelídeos/anatomia & histologia , Perfilação da Expressão Gênica , Genes Homeobox , Hormônios , Poliquetos/genética
12.
BMC Genomics ; 24(1): 583, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784028

RESUMO

BACKGROUND: Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal. Among annelids, the nereididae Platynereis dumerilii (re)emerged recently as a front-line regeneration model. Following amputation of its posterior part, Platynereis worms can regenerate both differentiated tissues of their terminal part as well as a growth zone that contains putative stem cells. While this regeneration process follows specific and reproducible stages that have been well characterized, the transcriptomic landscape of these stages remains to be uncovered. RESULTS: We generated a high-quality de novo Reference transcriptome for the annelid Platynereis dumerilii. We produced and analyzed three RNA-sequencing datasets, encompassing five stages of posterior regeneration, along with blastema stages and non-amputated tissues as controls. We included two of these regeneration RNA-seq datasets, as well as embryonic and tissue-specific datasets from the literature to produce a Reference transcriptome. We used this Reference transcriptome to perform in depth analyzes of RNA-seq data during the course of regeneration to reveal the important dynamics of the gene expression, process with thousands of genes differentially expressed between stages, as well as unique and specific gene expression at each regeneration stage. The study of these genes highlighted the importance of the nervous system at both early and late stages of regeneration, as well as the enrichment of RNA-binding proteins (RBPs) during almost the entire regeneration process. CONCLUSIONS: In this study, we provided a high-quality de novo Reference transcriptome for the annelid Platynereis that is useful for investigating various developmental processes, including regeneration. Our extensive stage-specific transcriptional analysis during the course of posterior regeneration sheds light upon major molecular mechanisms and pathways, and will foster many specific studies in the future.


Assuntos
Anelídeos , Poliquetos , Animais , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Anelídeos/genética , Poliquetos/genética , Perfilação da Expressão Gênica
13.
Mol Phylogenet Evol ; 187: 107872, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451325

RESUMO

Siboglinid tubeworms are found at chemosynthetic environments worldwide and the Vestimentifera clade is particularly well known for their reliance on chemoautotrophic bacterial symbionts for nutrition. The mitochondrial genomes have been published for nine vestimentiferan species to date. This study provides new complete mitochondrial genomes for ten further Vestimentifera, including the first mitochondrial genomes sequenced for Alaysia spiralis, Arcovestia ivanovi, Lamellibrachia barhami, Lamellibrachia columna, Lamellibrachia donwalshi, and unnamed species of Alaysia and Oasisia. Phylogenetic analyses combining fifteen mitochondrial genes and the nuclear 18S rRNA gene recovered Lamellibrachia as sister to the remaining Vestimentifera and Riftia pachyptila as separate from the other vent-endemic taxa. Implications and auxiliary analyses regarding differing phylogenetic tree topologies, substitution saturation, ancestral state reconstruction, and divergence estimates are also discussed. Additionally, a new species of Alaysia is described from the Manus Basin.


Assuntos
Anelídeos , Genoma Mitocondrial , Poliquetos , Animais , Poliquetos/genética , Filogenia , Anelídeos/genética , Bactérias/genética
14.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511295

RESUMO

During the early development of marine invertebrates, planktic larvae usually occur, and their body surfaces often form specific types of cilia that are involved in locomotion and feeding. The echiuran worm Urechis unicinctus sequentially undergoes the formation and disappearance of different types of body surface cilia during embryonic and larval development. The morphological characteristics and molecular mechanisms involved in the process remain unclear. In this study, we found that body surface cilia in U. unicinctus embryos and larvae can be distinguished into four types: body surface short cilia, apical tufts, circumoral cilia and telotrochs. Further, distribution and genesis of the body surface cilia were characterized using light microscope and electron microscope. To better understand the molecular mechanism during ciliogenesis, we revealed the embryonic and larval transcriptome profile of the key stages of ciliogenesis in U. unicinctus using RNA-Seq technology. A total of 29,158 differentially expressed genes (DEGs) were obtained from 24 cDNA libraries by RNA-Seq. KEGG pathway enrichment results showed that Notch, Wnt and Ca2+ signaling pathways were significantly enriched during the occurrence of apical tufts and circumoral cilia. Furthermore, all DEGs were classified according to their expression pattern, and DEGs with similar expression pattern were grouped into a module. All DEG co-expression modules were correlated with traits (body surface short cilia, apical tufts, circumoral cilia and telotrochs) by WGCNA, the results showed DEGs were divided into 13 modules by gene expression patterns and that the genes in No. 7, No. 8 and No. 10 modules were to be highly correlated with the occurrence of apical tufts, circumoral cilia and telotrochs. The top 10 hub genes in the above three modules were identified to be highly correlated with ciliogenesis, including the reported cilium-related gene Cnbd2 and unreported cilium-related candidate genes FAM181B, Capsl, Chst3, TMIE and Innexin. Notably, Innexin was included in the top10 hub genes of the two modules (No. 7 and No. 8), suggesting that Innexin may play an important role in U. unicinctus apical tufts, circumoral cilia and telotrochs genesis. This study revealed the characteristics of ciliogenesis on the body surface of U. unicinctus embryos and larvae, providing basic data for exploring the molecular mechanism of ciliogenesis on the body surface.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Poliquetos/genética , Perfilação da Expressão Gênica , Transcriptoma , Transdução de Sinais
15.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494294

RESUMO

The roles of DNA methylation in invertebrates are poorly characterized, and critical data are missing for the phylum Annelida. We fill this knowledge gap by conducting the first genome-wide survey of DNA methylation in the deep-sea polychaetes dominant in deep-sea vents and seeps: Paraescarpia echinospica, Ridgeia piscesae, and Paralvinella palmiformis. DNA methylation calls were inferred from Oxford Nanopore sequencing after assembling high-quality genomes of these animals. The genomes of these worms encode all the key enzymes of the DNA methylation metabolism and possess a mosaic methylome similar to that of other invertebrates. Transcriptomic data of these polychaetes support the hypotheses that gene body methylation strengthens the expression of housekeeping genes and that promoter methylation acts as a silencing mechanism but not the hypothesis that DNA methylation suppresses the activity of transposable elements. The conserved epigenetic profiles of genes responsible for maintaining homeostasis under extreme hydrostatic pressure suggest DNA methylation plays an important adaptive role in these worms.


Assuntos
Anelídeos , Poliquetos , Animais , Epigenoma , Poliquetos/genética , Poliquetos/metabolismo , Perfilação da Expressão Gênica , Genoma , Metilação de DNA
16.
Mol Biol Rep ; 50(9): 7183-7196, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37407804

RESUMO

BACKGROUND: The mitochondrial genomes (mitogenomes) of the family Serpulidae are characterized by a high nucleotide sequence divergence and a significant number of gene order rearrangements compared with other families within the phylum Annelida. However, only two of 50 genera of serpulids have mitogenomes already sequenced. In this study, we report the first sequencing and assembly of the complete mitogenome of Ficopomatus, thus providing further knowledge on mitochondrial gene sequences of Serpulidae. METHODS AND RESULTS: A mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus was amplified by long PCR and sequenced using the Illumina MiSeq System. It comprised 15,853 bp and consisted of 12 protein-coding genes (atp8 was not found), 23 tRNA, and two rRNA genes. The AT and GC skew values were infrequent when compared to annelid mitogenomes but similar to other serpulids sequenced to date (i.e., Spirobranchus and Hydroides). The mitochondrial gene order of F. enigmaticus was highly rearranged compared to other serpulids. To amplify 16S rRNA gene sequences, we developed a 16S rRNA primer set by modifying the universal primer set 16SarL/16SbrH. We detected the 16S rRNA sequence of F. enigmaticus deposited in GenBank erroneously characterized as of serpulid origin. We reported for the first time the presence of two lineages of F. enigmaticus in Japan, which have already been identified in California, Australia, and the Mediterranean. CONCLUSIONS: The first mitochondrial genome of F. enigmaticus showed a unique gene order rearrangement, corroborating the remarkable diversity in the previously reported mitogenomes of other serpulid species. The presence of the two lineages of F. enigmaticus identified for the first time in Japan represents another case of cryptic invasion. The first 16S rRNA gene sequences of F. enigmaticus obtained in the present study can be used as reference sequences in future DNA metabarcoding studies.


Assuntos
Anelídeos , Genoma Mitocondrial , Poliquetos , Animais , Anelídeos/genética , Genoma Mitocondrial/genética , Filogenia , Poliquetos/genética , RNA Ribossômico 16S/genética
17.
Genome Biol Evol ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401460

RESUMO

Deep-sea polynoid scale worms endemic to hydrothermal vents have evolved an adaptive strategy to the chronically hypoxic environment, but its underlying molecular mechanisms remain elusive. Here, we assembled a chromosome-scale genome of the vent-endemic scale worm Branchipolynoe longqiensis (the first annotated genome in the subclass Errantia) and annotated two shallow-water polynoid genomes, aiming to elucidate the adaptive mechanisms. We present a genome-wide molecular phylogeny of Annelida which calls for extensive taxonomy revision by including more genomes from key lineages. The B. longqiensis genome with a genome size of 1.86 Gb and 18 pseudochromosomes is larger than the genomes of two shallow-water polynoids, possibly due to the expansion of various transposable elements (TEs) and transposons. We revealed two interchromosomal rearrangements in B. longqiensis when compared with the two shallow-water polynoid genomes. The intron elongation and interchromosomal rearrangement can influence a number of biological processes, such as vesicle transport, microtubules, and transcription factors. Furthermore, the expansion of cytoskeleton-related gene families may favor the cell structure maintenance of B. longqiensis in the deep ocean. The expansion of synaptic vesicle exocytosis genes has possibly contributed to the unique complex structure of the nerve system in B. longqiensis. Finally, we uncovered an expansion of single-domain hemoglobin and a unique formation of tetra-domain hemoglobin via tandem duplications, which may be related to the adaptation to a hypoxic environment.


Assuntos
Anelídeos , Fontes Hidrotermais , Poliquetos , Animais , Anelídeos/genética , Filogenia , Hemoglobinas/genética , Poliquetos/genética , Genômica , Água
18.
Aquat Toxicol ; 260: 106594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263159

RESUMO

Toll-like receptors (TLR) are an important class of pattern recognition receptors involved in innate immunity that recognize pathogen-associated and damage-associated molecular patterns. Although the role of TLRs in immunity has been extensively studied, a systematic investigation of their function in environmental adaptation is still in its infancy. In this study, a genome-wide search was conducted to systematically investigate TLR family members of Urechis unicinctus, a typical benthic organism in intertidal mudflats. A total of 28 TLR genes were identified in the U. unicinctus genome, and their fundamental physiological and biochemical properties were characterized. Gene copy number analysis among species in different habitats indicated that TLR family gene expansion may be probably related with benthic environmental adaptation. To further investigate the expression patterns of TLR members under environmental stress, transcriptome data was analyzed from different developmental stages and the hindgut under sulfide stress. Transcriptome analysis of different developmental stages showed that most TLR genes were highly expressed during a key period of benthic environment adaptation (worm-shaped larva). Transcriptome analysis of the hindgut under sulfide stress showed that the expression of 12 TLR members was significantly induced under sulfide stress. These results indicate that the regulation of TLR gene expression may be probably involved in the adaptation of U. unicinctus to the benthic intertidal zone environment. Taken together, this study may lay the foundation for future functional analysis of the specific role of TLRs in host immune responses against sulfide exposure and benthic environmental stress in annelid.


Assuntos
Anelídeos , Poliquetos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Anelídeos/genética , Poliquetos/genética , Receptores Toll-Like/genética , Sulfetos
19.
Mol Phylogenet Evol ; 185: 107811, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169231

RESUMO

Polynoidae is the most diverse radiation of Aphroditiformia and one of the most successful groups of all Annelida in terms of diversity and habitats colonized. With such an unmatched diversity, phylogenetic investigations have struggled to understand their evolutionary relationships. Previous phylogenetic analyses have slowly increased taxon sampling and employed methodologies, but despite their diversity and biological importance, large genomic sampling is limited. To investigate the internal relationships within Polynoidae, we conducted the first phylogenomic analyses of the group based on 12 transcriptomes collected from species inhabiting a broad array of habitats, including shallow and deep waters, as well as hydrothermal vents, anchialine caves and the midwater. Our phylogenomic analyses of Polynoidae recovered congruent tree topologies representing the clades Polynoinae, Macellicephalinae and Lepidonotopodinae. Members of Polynoinae and Macellicephalinae clustered in well-supported and independent clades. In contrast, Lepidonotopodinae taxa were always recovered nested within Macellicephalinae. Though our sampling only covers a small proportion of the species known for Polynoidae, our results provide a robust phylogenomic framework to build from, emphasizing previously hypothesized relationships between Macellicephalinae and Lepidonotopodinae taxa, while providing new insights on the origin of enigmatic cave and pelagic lineages.


Assuntos
Anelídeos , Poliquetos , Animais , Filogenia , Transcriptoma , Anelídeos/genética , Poliquetos/genética , Evolução Biológica
20.
BMC Genomics ; 24(1): 248, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165306

RESUMO

BACKGROUND: Real-time quantitative PCR (RT-qPCR) is a crucial and widely used method for gene expression analysis. Selecting suitable reference genes is extremely important for the accuracy of RT-qPCR results. Commonly used reference genes are not always stable in various organisms or under different environmental conditions. With the increasing application of high-throughput sequencing, transcriptome analysis has become an effective method for identifying novel stable reference genes. RESULTS: In this study, we identified candidate reference genes based on transcriptome data covering embryos and larvae of early development, normal adult tissues, and the hindgut under sulfide stress using the coefficient of variation (CV) method in the echiuran Urechis unicinctus, resulting in 6834 (15.82%), 7110 (16.85%) and 13880 (35.87%) candidate reference genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the candidate reference genes were significantly enriched in cellular metabolic process, protein metabolic process and ribosome in early development and normal adult tissues as well as in cellular localization and endocytosis in the hindgut under sulfide stress. Subsequently, ten genes including five new candidate reference genes and five commonly used reference genes, were validated by RT-qPCR. The expression stability of the ten genes was analyzed using four methods (geNorm, NormFinder, BestKeeper, and ∆Ct). The comprehensive results indicated that the new candidate reference genes were more stable than most commonly used reference genes. The commonly used ACTB was the most unstable gene. The candidate reference genes STX12, EHMT1, and LYAG were the most stable genes in early development, normal adult tissues, and hindgut under sulfide stress, respectively. The log2(TPM) of the transcriptome data was significantly negatively correlated with the Ct values of RT-qPCR (Ct = - 0.5405 log2(TPM) + 34.51), which made it possible to estimate the Ct value before RT-qPCR using transcriptome data. CONCLUSION: Our study is the first to select reference genes for RT-qPCR from transcriptome data in Echiura and provides important information for future gene expression studies in U. unicinctus.


Assuntos
Poliquetos , Transcriptoma , Animais , Perfilação da Expressão Gênica , Poliquetos/genética , Sulfetos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...